
CS 5450: Networked and Distributed Systems
Homework 1: Go-back-n (Spring 2024)

Instructor: Vitaly Shmatikov, TA: Tingwei Zhang

Due: 11:59PM February 18, 2024

About this assignment

This should be a fun project with images and TCP/IP stack.
You can work in groups of 2, there is a Slack post that will help you find teammates. There

are two slip days for the entire course that you can take on this or any other assignment. If you
run out of slip days and submit late, a penalty of at least 50% of the grade will be assessed for that
assignment. Be sure not to submit late – we will enforce a strict 11:59 PM deadline.

Use Slack for questions. The TA will do his best to respond twice a day to questions but peers
may well respond faster and you might see answers to your questions even before you know what
those questions are :}

We encourage you to start early and leave some time for writing up your report.

Useful links

Website: https://cs5450.github.io
Slack: https://join.slack.com/t/networkedandd-uzv2286/shared_invite/zt-2aam86og5-IqV2hXak2MzyO5ovDx_
Hdw

Getting started

• Download the skeleton code from Canvas.

• From the Linux command line type:

gunzip HW1 skeleton.tar.gz

tar -xvf HW1 skeleton.tar

• The above commands will extract the skeleton files for you.

• To compile the code, simply type make at the command line.

Introduction

In this project you will be implementing a Go-back-n (GBN) protocol. Real-world systems are usu-
ally connected by unreliable links, which can reorder, lose, or disrupt the packets exchanged. The
task of your transport layer implementation is to make sure that data sent on one end appears on
the other end exactly as it was sent. You will not be implementing the reliable transport protocol

1

https://cs5450.github.io
https://join.slack.com/t/networkedandd-uzv2286/shared_invite/zt-2aam86og5-IqV2hXak2MzyO5ovDx_Hdw
https://join.slack.com/t/networkedandd-uzv2286/shared_invite/zt-2aam86og5-IqV2hXak2MzyO5ovDx_Hdw

in a simulated environment, but rather in real-world UNIX systems.

Your implementation should address the three above-mentioned issues and should provide to
the application the illusion of having a byte stream between the two communicating processes. You
are not asked to provide full-duplex data transmission (i.e., both ends transmit data packets to
each other), but you must implement a simple congestion control mechanism. When packets are
dropped, the protocol will start sending at a slower rate (e.g., Go-back-1), and speed up when it
successfully receives an acknowledgement (e.g., Go-back-2, Go-back-4). In our protocols, only one
end sends data; the other end only sends acknowledgments back to the sender.

There is skeleton code available on Canvas to help get you started. The sender and receiver
files will not need to be modified for your project. These exact commands should run the program:

./sender <hostname> <port> <filename>

./receiver <port> <filename>

Requirements

You should implement the following functions for this project:

• gbn socket(): used to setup a socket.

• gbn connect(): used to initiate a connection.

• gbn send(): used to send packet data using GBN protocol.

• gbn recv(): used to receive packet data using GBN protocol.

• gbn close(): used to end a connection and close the socket.

• gbn bind(): used to bind a socket to your application.

• gbn listen(): used to change state to listening for activity on a socket.

• gbn accept(): used to accept an incoming connection.

In some cases your function may not need to provide any additional functionality beyond that
of the system call; in this case, all you will need to do is make the system call (passing any necessary
arguments). You must build your protocol using the system calls provided by UDP to applications:

• socket()

• sendto()

• recvfrom()

• close()

• bind()

2

It is highly recommended that you read the manual pages for these system calls. You can use
Beej’s guide (http://beej.us/guide/bgnet/) or online sources.

Note: You must use only the five UDP system call functions mentioned above to perform network
operations. For example, it is not ok to use such system calls as send() in place of sendto().
Implement additional helper functions as necessary.

Specifications

You can find the description of the Go-back-n protocol here. It’s part of Chapter 3.4.3 of the
textbook by Kurose and Ross ”Computer Networking: A top-down approach” (it’s a recommended
textbook if you want to learn more about computer networking). Here is a cool visualisation:

http://www.ccs-labs.org/teaching/rn/animations/gbn_sr/

The protocol you are about to implement in this project is a simplified version of the protocol
described in the textbook.

For implementing the time-outs mentioned in the protocol description, you need to set up
timer(s) for the packets you send (a single timer or multiple timers depending on which protocol
you use). You can do that using either the alarm() or the setitimer() functions. These functions
take one argument which represents the amount of time it should wait before sending a signal
to the process. If the timer expires, a SIGALRM signal is sent to the process. When the process
receives such a signal, it stops running the current code and runs the signal handler. The signal
handler must be explicitly assigned to a user-defined function in the code. It can be done using the
signal() function. This function takes two arguments: the signal type (SIGALRM in our case) and
a function pointer (the name of the function you define to handle the signal), and establishes the
binding between the two.

Besides running the signal handler, signals can be useful to wake up a sleeping process. For in-
stance, whenever we call the recvfrom() function to read a packet from a UDP socket, the process
goes to sleep until a UDP datagram arrives for that socket. If the timer expires while we are still
waiting for a packet to arrive, the process is awoken. The first code it runs after waking up is the
signal handler. After the signal handler returns, the function that caused the sleep (in our example,
recvfrom()) returns and the regular execution of the process resumes. The return value of that
function can be checked to see if it returned due to a timer expiring or due to actually receiving
a UDP datagram. For example, whenever it is awaken by the timer, recvfrom() returns -1 and a
special error variable called errno is set to EINTR, which means “interrupted function call”. When
recvfrom() is awoken by a packet being received, it simply returns the number of bytes received.
This difference can be used to make the retransmission part easier to implement.

You should design a simple state machine for your protocols and implement it. Your protocols
should have a connection setup and a connection teardown. In the connection setup, a so-called SYN

packet must be sent to the server to initiate the connection. The server then replies with a SYNACK

packet to the client if it accepts the connection or with a RST packet if it rejects the connection. In
the connection teardown, the party wanting to finish the connection should send a FIN packet to

3

http://beej.us/guide/bgnet/
https://gaia.cs.umass.edu/kurose_ross/online_lectures.htm
http://www.ccs-labs.org/teaching/rn/animations/gbn_sr/

the other end host. This other host, in turn, replies with a FINACK packet to acknowledge the first
FIN packet.

Your Go-back-n algorithm will have a basic congestion control mechanism. To be more specific,
you need to dynamically adjust your transfer speed(i.e., the value of n) as the network traffic sit-
uation traffic changes. As a hint, we recommend you to try a base speed 1(20) at first and try to
adjust it exponentially according to network traffic situation. Note that the value of n should be
the power of 2 so the speed will take the form of 2t where t is the speed ratio you need to adjust. All
you should do is to increase t when traffic is light(all acks are well received within the timeout) and
decrease t when traffic is heavy(at least one ack lost after the timeout). One thing to be mentioned:
You should not set your speed way too large so that the size of packets you need to keep track of
exceeds the size of your buffer pool. In order to evaluate your algorithm’s performance, We will
offer extra bonus points for the fastest file transfer.

In the skeleton code provided, we provide a header for the packets composed of a 16-bit type
field and a 16-bit checksum field. The type field identifies the type of packet being sent (e.g., SYN,
SYNACK, FIN, etc.). The checksum field is used to check the integrity of the received packet. It is
calculated by the packet sender and checked by the packet receiver. The checksum should take into
account the entire header and the carried data. We provide the function that can be used to both
calculate and check the checksum.

The SYN, SYNACK, FIN, FINACK, and RST packets contain no DATA field. They are only composed
of the type and checksum fields. In your code, we also suggest adding a few states to your state
machine, such as CLOSED, SYN SENT, SYN RCVD, ESTABLISHED, FIN SENT, and FIN RCVD, but you
are welcome to change them if you want.

In order to test if your protocol works with losses/corruption, you should not call the recvfrom()
or sendto() function directly. Although unreliable, data transmission in local networks can
have little loss and almost no corruption. Instead, you should use wrapper functions we pro-
vide called maybe recvfrom() and maybe sendto(). Both functions select packets at random to
be dropped/corrupted based on some fixed loss and corruption probabilities. They have the same
parameters as the regular recvfrom() and sendto() function used to receive UDP datagrams.

For this project, you can safely use static values for the timer(s); that is, the time interval to
wait after a packet is sent is not dynamically adjusted. It is a predetermined value that does not
change throughout the connection (a value of 1-2 seconds should work well for the project). You
can also assume that if the same packet is sent five times without receiving any acknowledgment,
the connection is broken. You can compare the original file to the received file using simple UNIX
commands, such as diff file1 file2 or md5sum file1 file2.

Deliverables

Note that the programming language that you use should be C and your program should run
on a Linux machine with Ubuntu OS. As our autograder runs on Ubuntu 16.04, we
strongly recommend to use the same setup. Some of the previous submissions that were

4

developed for MacOS didn’t work and were deducted points.

• You need to submit all commented source files in a single tar.gz file. Type make tarball

at the command line and submit the single tar.gz file to Canvas.

• You are also required to submit a short report discussing the results (1-2 pages). The printed
reports should be turned in Canvas by the same deadline. Particularly, you need to include
the following items in your report:

– A general description of the protocol

– A paragraph about the performance optimization under different network reliability
assumptions

The project due date is 11:59PM February 18, 2024. Good luck!

5

